

9th INTERNATIONAL SYMPOSIUM **HYDROGEN & ENERGY**

Integrating European Infrastructure to support and development of Hydrogen- and Fuel Cell Technologies towards European Strategy for Sustainable, Competitive and Secure Energy

www.H2FC.eu

SYNTHESIS AND CHARACTERISATION OF NEW AMIDOBORANES

NIKOLA BILIŠKOV (1), IVAN HALASZ (1), ELSA CALLINI (2), ANDREAS BORGSCHULTE (2), ANDREAS ZÜTTEL (2)

- (1) Ruđer Bošković Institute, Division of Materials Chemistry, 10000 Zagreb, Croatia
- (2) EMPA, Materials and Technology, Dept. Hydrogen and Energy, 8600 Dübendorf, Switzerland

PROBLEM AND ASPECTS

Ammonia borane (NH₃BH₃, AB)

 $M = 30,87 \text{ g mol}^{-1}$ w(H) = 19,6% $\phi(H) = 145 \text{ g dm}^{-3}$, = 110 °C

Extensive dihydrogen bonding network

 $xNH_3BH_3 \xrightarrow{110 \circ C} [NH_2BH_2]_x + xH_2 \rightarrow$ $\xrightarrow{150\,^{\circ}\text{C}} [\text{NHBH}]_x + x\text{H}_2$

Drawbacks:

- Complex dehydrogenation mechanism
- Release of unwanted side-products

A combination of chemical modification (substitution of one protic hydrogen by electropositive metal) with destabilisation of dihydrogen bonding network was employed here to overcome these drawbacks.

EXPERIMENT OR MEASUREMENT EXECUTED Preparation:

 $MH_n + mNH_3BH_3 \rightarrow M(NH_2BH_3)_n \cdot (m-n)NH_3BH_3 + nH_2$

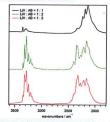
Characterisation:

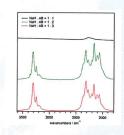
Single-reflection ATR IR spectroscopy

Variable-temperature Raman spectroscopy

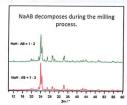
30 min milling in Ar

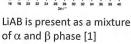
Powder XRD

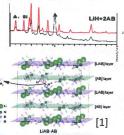


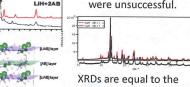

DSC

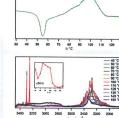
RESULTS AND CONCLUSION


MAB·MAB (M = Li, NA; M = 0, 1, 2)

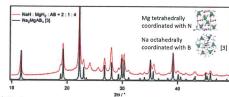

IR spectra

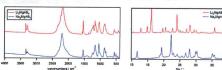



Powder XRD patterns



All attempts to obtain NaAB by milling 1:1 mixture of NaH and AB were unsuccessful.



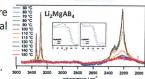


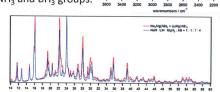
Decrease of both v(NH) and v(BH) intensity observed at 50 °C, which is followed by a reorganisation. At >110 °C a steep drop is evident.

Li2MG(AB)4

Successful preparation of Na₂Mg(AB)₄ [3].

Very similar IR spectra, but different XRDs. Similar bonding in Na2Mg(AB)4 and Li2Mg(AB)4, but different packing in solid state, as confirmed by structure solved by Rietveld method.




Structure of Li₂MgAB₄, as solved by Rietveld method: Mg tetrahedrally coordinated with N, Li coordinated with 5 B atoms.

Complexity of DSC indicates some solid-state phase transitions in Li2MgAB4.

Variable-temperature Raman spectra reveal synchronous decomposition of NH₃ and BH₃ groups.

Attempts to prepare trimetallic amidoborane LiNaMg(AB)₄ as well as aducts of bimetallic MABs with AB, Li₂Mg(AB)₄·AB and Na₂Mg(AB)₄·AB, were unsuccessful.

REFERENCES

- [1] Wu et al. Inorg. Chem. 49 (2010) 4319
- [2] Fijalkowski, Grochala, J. Mater. Chem. 19 (2009) 2043
- [3] Wu et al. Chem. Commun. 47 (2011) 4102

This project became indirectly funded through European Commission by occupying transnational access of HzFC Euro ucture which is funded by FP7 Capacity Program, Grand Agreement no. FP7-284522

LiAB.

— LIAB — LIABXAB

A considerable drop of

temperature for LiAB

with respect to AB and

dehydrogenation

